Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.12.05.570076

RESUMEN

Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and to structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work we show through over 45 s of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how the structural role of this glycan changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2) and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.


Asunto(s)
Síndrome Respiratorio Agudo Grave , Convulsiones
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.04.01.438036

RESUMEN

The SARS-CoV-2 spike (S) is a type I fusion glycoprotein, responsible for initiating the infection leading to COVID19. As a feature unique of SARS-CoV-2, the thick glycan shield covering the S protein is not only essential for hiding the virus from immune detection, but it also plays multiple functional roles, stabilising the S prefusion open conformation, which is competent for binding the ACE2 primary receptor, and gating the open-to-close transitions. This newly discovered functions of the glycan shield suggest the evolution of its sites of glycosylation is potentially intertwined with the evolution of the overall protein sequence to affect optimal activity. Furthermore, recent studies indicate that the occupancy and structures of SARS-CoV-2 S glycosylation depends not only on the host-cell, but also on the structural stability of the prefusion trimer; a point that raises important questions about the relative binding competence of different glycoforms. In this work we use multi-microsecond molecular dynamics simulations to characterize the structure and dynamics of different SARS-CoV-2 S models with different N-glycans at key functional sites, namely N234, N165 and N343. We also assessed the effect of a change in the SARS-CoV-2 S glycan shield topology at N370, due to the recently acquired T372A mutation. Our results indicate that the structures of the N-glycans at N234, N165 and N343 affect the stability of the active (or open) S conformation, and thus its exposure and accessibility. Furthermore, while glycosylation at N370 stabilizes the open S conformation, we find that the N370 glycan binds the closed receptor binding domain (RBD) surface, essentially tying the closed protomers together. These results suggest that the loss of the N370 glycosylation site in SARS-CoV-2 may have increased the availability of the open S form, perhaps contributing to its higher infectivity relative to CoV1 and other variants carrying the sequon. Finally, we discuss these specific changes to the topology of the SARS-CoV-2 S glycan shield through ancestral sequence reconstruction of select SARS strains and discuss how they may have evolved to affect S activity.


Asunto(s)
Síndrome Respiratorio Agudo Grave , COVID-19
3.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.27.175430

RESUMEN

The SARS-CoV-2/COVID-19 pandemic continues to threaten global health and socioeconomic stability. Experiments have revealed snapshots of many of the viral components but remain blind to moving parts of these molecular machines. To capture these essential processes, over a million citizen scientists have banded together through the Folding@home distributed computing project to create the world’s first Exascale computer and simulate protein dynamics. An unprecedented 0.1 seconds of simulation of the viral proteome reveal how the spike complex uses conformational masking to evade an immune response, conformational changes implicated in the function of other viral proteins, and ‘cryptic’ pockets that are absent in experimental snapshots. These structures and mechanistic insights present new targets for the design of therapeutics.This living document will be updated as we perform further analysis and make the data publicly accessible.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Asunto(s)
COVID-19
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.11.146522

RESUMEN

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 7,000,000 infections and 400,000 deaths worldwide to date. Antibody development efforts mainly revolve around the extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates the host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2). In the context of vaccine design, similar to many other viruses, the SARS-CoV-2 spike utilizes a glycan shield to thwart the host immune response. Here, we built a full-length model of glycosylated SARS-CoV-2 S protein, both in the open and closed states, augmenting the available structural and biological data. Multiple microsecond-long, all-atom molecular dynamics simulations were used to provide an atomistic perspective on the glycan shield and the protein structure, stability, and dynamics. End-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of SARS-CoV-2 S protein, which can be harnessed for vaccine development. In addition, a dynamic analysis of the main antibody epitopes is provided. Finally, beyond shielding, a possible structural role of N-glycans at N165 and N234 is hypothesized to modulate and stabilize the conformational dynamics of the spikes receptor binding domain, which is responsible for ACE2 recognition. Overall, this work presents hitherto unseen functional and structural insights into the SARS-CoV-2 S protein and its glycan coat, which may be exploited by therapeutic efforts targeting this essential molecular machine.


Asunto(s)
Síndrome Respiratorio Agudo Grave , COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA